What is Feasible , Infeasible , and Impossible , Computationally
نویسنده
چکیده
منابع مشابه
A Heuristic Approach for Solving LIP with the Optional Feasible or Infeasible Initial Solution Points
An interactive heuristic approach can offer a practical solution to the problem of linear integer programming (LIP) by combining an optimization technique with the Decision Maker’s (DM) judgment and technical supervision. This is made possible using the concept of bicriterion linear programming (BLP) problem in an integer environment. This model proposes two bicriterion linear programs for iden...
متن کاملInverse feasible problem
In many infeasible linear programs it is important to construct it to a feasible problem with a minimum pa-rameters changing corresponding to a given nonnegative vector. This paper defines a new inverse problem, called “inverse feasible problem”. For a given infeasible polyhedron and an n-vector a minimum perturba-tion on the parameters can be applied and then a feasible polyhedron is concluded.
متن کاملA full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem
A full Nesterov-Todd (NT) step infeasible interior-point algorithm is proposed for solving monotone linear complementarity problems over symmetric cones by using Euclidean Jordan algebra. Two types of full NT-steps are used, feasibility steps and centering steps. The algorithm starts from strictly feasible iterates of a perturbed problem, and, using the central path and feasi...
متن کاملA New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization
We present a new full Nesterov and Todd step infeasible interior-point algorithm for semi-definite optimization. The algorithm decreases the duality gap and the feasibility residuals at the same rate. In the algorithm, we construct strictly feasible iterates for a sequence of perturbations of the given problem and its dual problem. Every main iteration of the algorithm consists of a feasibili...
متن کاملRepairing MIP infeasibility through local branching
Finding a feasible solution to a generic Mixed-Integer Program (MIP) is often a very difficult task. Recently, two heuristic approaches called Feasibility Pump and Local Branching have been proposed to address the problem of finding a feasible solution and improving it, respectively. In this paper we introduce and analyze computationally a hybrid algorithm that uses the feasibility pump method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009